Comparison of Objective Functions for Feed-forward Neural Network Classifiers Using Receiver Operating Characteristics Graph
نویسندگان
چکیده
منابع مشابه
Margin-Based Feed-Forward Neural Network Classifiers
Margin-Based Principle has been proposed for a long time, it has been proved that this principle could reduce the structural risk and improve the performance in both theoretical and practical aspects. Meanwhile, feed-forward neural network is a traditional classifier, which is very hot at present with a deeper architecture. However, the training algorithm of feed-forward neural network is devel...
متن کاملGlobal Solar Radiation Prediction for Makurdi, Nigeria Using Feed Forward Backward Propagation Neural Network
The optimum design of solar energy systems strongly depends on the accuracy of solar radiation data. However, the availability of accurate solar radiation data is undermined by the high cost of measuring equipment or non-functional ones. This study developed a feed-forward backpropagation artificial neural network model for prediction of global solar radiation in Makurdi, Nigeria (7.7322 N lo...
متن کاملInvestigating redundancy in feed-forward neural classifiers
Ž . In this article we will focus on how we can investigate read visualise the clustering behaviour of neurons during training. This clustering property has already been investigated before, by Annema, Vogtlander and Schmidt. However, we ̈ will present a different approach in visualisation illustrated by experiments performed on two-class problems. q 1997 Elsevier Science B.V.
متن کاملFace Recognition using Feed Forward Neural Network
In this paper, we propose four techniques for extraction of facial features namely 2DPCA, LDA, KPCA and KFA. The purpose of face feature extraction is to capture certain discriminative features that are unique for a person. In the previous works that uses PCA for face feature extraction involves merging the features and reducing the dimensions that results in some information loss. To overcome ...
متن کاملSignal Prediction by Layered Feed - Forward Neural Network (RESEARCH NOTE).
In this paper a nonparametric neural network (NN) technique for prediction of future values of a signal based on its past history is presented. This approach bypasses modeling, identification, and parameter estimation phases that are required by conventional parametric techniques. A multi-layer feed forward NN is employed. It develops an internal model of the signal through a training operation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Contents
سال: 2014
ISSN: 1738-6764
DOI: 10.5392/ijoc.2014.10.1.023